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3.2

To be transmitted, data must be 

transformed to electromagnetic signals.

Note



3.3

3-1   ANALOG AND DIGITAL

Data can be analog or digital. The term analog data refers

to information that is continuous; digital data refers to

information that has discrete states. Analog data take on

continuous values. Digital data take on discrete values.

Analog and Digital Data

Analog and Digital Signals

Periodic and Nonperiodic Signals

Topics discussed in this section:



3.4

Note

Data can be analog or digital. 

Analog data are continuous and take 

continuous values.

Digital data have discrete states and 

take discrete values.



3.5

Signals can be analog or digital. 

Analog signals can have an infinite 

number of values in a range; digital 

signals can have only a limited 

number of values.

Note



3.6

Figure 3.1  Comparison of analog and digital signals



3.7

In data communications, we commonly 

use periodic analog signals and 

nonperiodic digital signals.

Note



3.8

3-2   PERIODIC ANALOG SIGNALS

Periodic analog signals can be classified as simple or

composite. A simple periodic analog signal, a sine wave,

cannot be decomposed into simpler signals. A composite

periodic analog signal is composed of multiple sine

waves.

Sine Wave

Wavelength

Time and Frequency Domain

Composite Signals

Bandwidth

Topics discussed in this section:



3.9

Figure 3.2  A sine wave



3.10

We discuss a mathematical approach to 

sine waves in Appendix C.

Note



3.11

The power in your house can be represented by a sine

wave with a peak amplitude of 155 to 170 V. However, it

is common knowledge that the voltage of the power in

U.S. homes is 110 to 120 V. This discrepancy is due to

the fact that these are root mean square (rms) values.

The signal is squared and then the average amplitude is

calculated. The peak value is equal to 2½ × rms value.

Example 3.1



3.12

Figure 3.3  Two signals with the same phase and frequency, 

but different amplitudes



3.13

The voltage of a battery is a constant; this constant value

can be considered a sine wave, as we will see later. For

example, the peak value of an AA battery is normally

1.5 V.

Example 3.2



3.14

Frequency and period are the inverse of 

each other.

Note



3.15

Figure 3.4  Two signals with the same amplitude and phase,

but different frequencies



3.16

Table 3.1  Units of period and frequency



3.17

The power we use at home has a frequency of 60 Hz.

The period of this sine wave can be determined as

follows:

Example 3.3



3.18

Express a period of 100 ms in microseconds.

Example 3.4

Solution

From Table 3.1 we find the equivalents of 1 ms (1 ms is

10−3 s) and 1 s (1 s is 106 μs). We make the following

substitutions:.



3.19

The period of a signal is 100 ms. What is its frequency in

kilohertz?

Example 3.5

Solution

First we change 100 ms to seconds, and then we

calculate the frequency from the period (1 Hz = 10−3

kHz).



3.20

Frequency is the rate of change with 

respect to time. 

Change in a short span of time

means high frequency.

Change over a long span of 

time means low frequency.

Note



3.21

If a signal does not change at all, its 

frequency is zero.

If a signal changes instantaneously, its 

frequency is infinite.

Note



3.22

Phase describes the position of the 

waveform  relative to time 0.

Note



3.23

Figure 3.5  Three sine waves with the same amplitude and frequency,

but different phases



3.24

A sine wave is offset 1/6 cycle with respect to time 0.

What is its phase in degrees and radians?

Example 3.6

Solution

We know that 1 complete cycle is 360°. Therefore, 1/6

cycle is



3.25

Figure 3.6  Wavelength and period



3.26

Figure 3.7  The time-domain and frequency-domain plots of a sine wave



3.27

A complete sine wave in the time 

domain can be represented by one 

single spike in the frequency domain.

Note



3.28

The frequency domain is more compact and

useful when we are dealing with more than one

sine wave. For example, Figure 3.8 shows three

sine waves, each with different amplitude and

frequency. All can be represented by three

spikes in the frequency domain.

Example 3.7



3.29

Figure 3.8  The time domain and frequency domain of three sine waves



3.30

A single-frequency sine wave is not 

useful in data communications;

we need to send a composite signal, a 

signal made of many simple sine waves.

Note



3.31

According to Fourier analysis, any 

composite signal is a combination of

simple sine waves with different 

frequencies, amplitudes, and phases.

Fourier analysis is discussed in 

Appendix C.

Note



3.32

If the composite signal is periodic, the 

decomposition gives a series of signals 

with discrete frequencies; 

if the composite signal is nonperiodic, 

the decomposition gives a combination 

of sine waves with continuous 

frequencies.

Note



3.33

Figure 3.9 shows a periodic composite signal with

frequency f. This type of signal is not typical of those

found in data communications. We can consider it to be

three alarm systems, each with a different frequency.

The analysis of this signal can give us a good

understanding of how to decompose signals.

Example 3.8



3.34

Figure 3.9  A composite periodic signal



3.35

Figure 3.10  Decomposition of a composite periodic signal in the time and

frequency domains



3.36

Figure 3.11 shows a nonperiodic composite signal. It

can be the signal created by a microphone or a telephone

set when a word or two is pronounced. In this case, the

composite signal cannot be periodic, because that

implies that we are repeating the same word or words

with exactly the same tone.

Example 3.9



3.37

Figure 3.11  The time and frequency domains of a nonperiodic signal



3.38

The bandwidth of a composite signal is 

the difference between the

highest and the lowest frequencies 

contained in that signal.

Note



3.39

Figure 3.12  The bandwidth of periodic and nonperiodic composite signals



3.40

If a periodic signal is decomposed into five sine waves

with frequencies of 100, 300, 500, 700, and 900 Hz, what

is its bandwidth? Draw the spectrum, assuming all

components have a maximum amplitude of 10 V.

Solution

Let fh be the highest frequency, fl the lowest frequency,

and B the bandwidth. Then

Example 3.10

The spectrum has only five spikes, at 100, 300, 500, 700,

and 900 Hz (see Figure 3.13).



3.41

Figure 3.13  The bandwidth for Example 3.10



3.42

A periodic signal has a bandwidth of 20 Hz. The highest

frequency is 60 Hz. What is the lowest frequency? Draw

the spectrum if the signal contains all frequencies of the

same amplitude.

Solution

Let fh be the highest frequency, fl the lowest frequency,

and B the bandwidth. Then

Example 3.11

The spectrum contains all integer frequencies. We show

this by a series of spikes (see Figure 3.14).



3.43

Figure 3.14  The bandwidth for Example 3.11



3.44

A nonperiodic composite signal has a bandwidth of 200

kHz, with a middle frequency of 140 kHz and peak

amplitude of 20 V. The two extreme frequencies have an

amplitude of 0. Draw the frequency domain of the

signal.

Solution

The lowest frequency must be at 40 kHz and the highest

at 240 kHz. Figure 3.15 shows the frequency domain

and the bandwidth.

Example 3.12



3.45

Figure 3.15  The bandwidth for Example 3.12



3.46

An example of a nonperiodic composite signal is the

signal propagated by an AM radio station. In the United

States, each AM radio station is assigned a 10-kHz

bandwidth. The total bandwidth dedicated to AM radio

ranges from 530 to 1700 kHz. We will show the rationale

behind this 10-kHz bandwidth in Chapter 5.

Example 3.13



3.47

Another example of a nonperiodic composite signal is

the signal propagated by an FM radio station. In the

United States, each FM radio station is assigned a 200-

kHz bandwidth. The total bandwidth dedicated to FM

radio ranges from 88 to 108 MHz. We will show the

rationale behind this 200-kHz bandwidth in Chapter 5.

Example 3.14



3.48

Another example of a nonperiodic composite signal is

the signal received by an old-fashioned analog black-

and-white TV. A TV screen is made up of pixels. If we

assume a resolution of 525 × 700, we have 367,500

pixels per screen. If we scan the screen 30 times per

second, this is 367,500 × 30 = 11,025,000 pixels per

second. The worst-case scenario is alternating black and

white pixels. We can send 2 pixels per cycle. Therefore,

we need 11,025,000 / 2 = 5,512,500 cycles per second, or

Hz. The bandwidth needed is 5.5125 MHz.

Example 3.15



3.49

3-3   DIGITAL SIGNALS

In addition to being represented by an analog signal,

information can also be represented by a digital signal.

For example, a 1 can be encoded as a positive voltage

and a 0 as zero voltage. A digital signal can have more

than two levels. In this case, we can send more than 1 bit

for each level.

Bit Rate

Bit Length

Digital Signal as a Composite Analog Signal

Application Layer

Topics discussed in this section:



3.50

Figure 3.16  Two digital signals: one with two signal levels and the other

with four signal levels



3.51

Appendix C reviews information about exponential and 

logarithmic functions.

Note

Appendix C reviews information about 

exponential and logarithmic functions.



3.52

A digital signal has eight levels. How many bits are

needed per level? We calculate the number of bits from

the formula

Example 3.16

Each signal level is represented by 3 bits.



3.53

A digital signal has nine levels. How many bits are

needed per level? We calculate the number of bits by

using the formula. Each signal level is represented by

3.17 bits. However, this answer is not realistic. The

number of bits sent per level needs to be an integer as

well as a power of 2. For this example, 4 bits can

represent one level.

Example 3.17



3.54

Assume we need to download text documents at the rate

of 100 pages per minute. What is the required bit rate of

the channel?

Solution

A page is an average of 24 lines with 80 characters in

each line. If we assume that one character requires 8

bits, the bit rate is

Example 3.18



3.55

A digitized voice channel, as we will see in Chapter 4, is

made by digitizing a 4-kHz bandwidth analog voice

signal. We need to sample the signal at twice the highest

frequency (two samples per hertz). We assume that each

sample requires 8 bits. What is the required bit rate?

Solution

The bit rate can be calculated as

Example 3.19



3.56

What is the bit rate for high-definition TV (HDTV)?

Solution

HDTV uses digital signals to broadcast high quality

video signals. The HDTV screen is normally a ratio of

16 : 9. There are 1920 by 1080 pixels per screen, and the

screen is renewed 30 times per second. Twenty-four bits

represents one color pixel.

Example 3.20

The TV stations reduce this rate to 20 to 40 Mbps

through compression.



3.57

Figure 3.17  The time and frequency domains of periodic and nonperiodic

digital signals



3.58

Figure 3.18  Baseband transmission



3.59

A digital signal is a composite analog 

signal with an infinite bandwidth.

Note



3.60

Figure 3.19  Bandwidths of two low-pass channels



3.61

Figure 3.20  Baseband transmission using a dedicated medium



3.62

Baseband transmission of a digital 

signal that preserves the shape of the 

digital signal is possible only if we have 

a low-pass channel with an infinite or 

very wide bandwidth.

Note



3.63

An example of a dedicated channel where the entire

bandwidth of the medium is used as one single channel

is a LAN. Almost every wired LAN today uses a

dedicated channel for two stations communicating with

each other. In a bus topology LAN with multipoint

connections, only two stations can communicate with

each other at each moment in time (timesharing); the

other stations need to refrain from sending data. In a

star topology LAN, the entire channel between each

station and the hub is used for communication between

these two entities. We study LANs in Chapter 14.

Example 3.21



3.64

Figure 3.21  Rough approximation of a digital signal using the first harmonic 

for worst case



3.65

Figure 3.22  Simulating a digital signal with first three harmonics



3.66

In baseband transmission, the required bandwidth is 

proportional to the bit rate;

if we need to send bits faster, we need more bandwidth.

Note

In baseband transmission, the required 

bandwidth is proportional to the bit rate;

if we need to send bits faster, we need 

more bandwidth.



3.67

Table 3.2  Bandwidth requirements



3.68

What is the required bandwidth of a low-pass channel if

we need to send 1 Mbps by using baseband transmission?

Solution

The answer depends on the accuracy desired.

a. The minimum bandwidth, is B = bit rate /2, or 500 kHz.

b. A better solution is to use the first and the third

harmonics with  B = 3 × 500 kHz = 1.5 MHz.

c. Still a better solution is to use the first, third, and fifth

harmonics with B = 5 × 500 kHz = 2.5 MHz.

Example 3.22



3.69

We have a low-pass channel with bandwidth 100 kHz.

What is the maximum bit rate of this

channel?

Solution

The maximum bit rate can be achieved if we use the first

harmonic. The bit rate is 2 times the available bandwidth,

or 200 kbps.

Example 3.22



3.70

Figure 3.23  Bandwidth of a bandpass channel



3.71

If the available channel is a bandpass 

channel, we cannot send the digital 

signal directly to the channel; 

we need to convert the digital signal to 

an analog signal before transmission.

Note



3.72

Figure 3.24  Modulation of a digital signal for transmission on a bandpass 

channel



3.73

An example of broadband transmission using

modulation is the sending of computer data through a

telephone subscriber line, the line connecting a resident

to the central telephone office. These lines are designed

to carry voice with a limited bandwidth. The channel is

considered a bandpass channel. We convert the digital

signal from the computer to an analog signal, and send

the analog signal. We can install two converters to

change the digital signal to analog and vice versa at the

receiving end. The converter, in this case, is called a

modem which we discuss in detail in Chapter 5.

Example 3.24



3.74

A second example is the digital cellular telephone. For

better reception, digital cellular phones convert the

analog voice signal to a digital signal (see Chapter 16).

Although the bandwidth allocated to a company

providing digital cellular phone service is very wide, we

still cannot send the digital signal without conversion.

The reason is that we only have a bandpass channel

available between caller and callee. We need to convert

the digitized voice to a composite analog signal before

sending.

Example 3.25



3.75

3-4   TRANSMISSION IMPAIRMENT

Signals travel through transmission media, which are not

perfect. The imperfection causes signal impairment. This

means that the signal at the beginning of the medium is

not the same as the signal at the end of the medium.

What is sent is not what is received. Three causes of

impairment are attenuation, distortion, and noise.

Attenuation

Distortion

Noise

Topics discussed in this section:



3.76

Figure 3.25  Causes of impairment



3.77

Figure 3.26  Attenuation



3.78

Suppose a signal travels through a transmission medium

and its power is reduced to one-half. This means that P2

is (1/2)P1. In this case, the attenuation (loss of power)

can be calculated as

Example 3.26

A loss of 3 dB (–3 dB) is equivalent to losing one-half

the power.



3.79

A signal travels through an amplifier, and its power is

increased 10 times. This means that P2 = 10P1 . In this

case, the amplification (gain of power) can be calculated

as

Example 3.27



3.80

One reason that engineers use the decibel to measure the

changes in the strength of a signal is that decibel

numbers can be added (or subtracted) when we are

measuring several points (cascading) instead of just two.

In Figure 3.27 a signal travels from point 1 to point 4. In

this case, the decibel value can be calculated as

Example 3.28



3.81

Figure 3.27  Decibels for Example 3.28



3.82

Sometimes the decibel is used to measure signal power

in milliwatts. In this case, it is referred to as dBm and is

calculated as dBm = 10 log10 Pm , where Pm is the power

in milliwatts. Calculate the power of a signal with dBm =

−30.

Solution

We can calculate the power in the signal as

Example 3.29



3.83

The loss in a cable is usually defined in decibels per

kilometer (dB/km). If the signal at the beginning of a

cable with −0.3 dB/km has a power of 2 mW, what is the

power of the signal at 5 km?

Solution

The loss in the cable in decibels is 5 × (−0.3) = −1.5 dB.

We can calculate the power as

Example 3.30



3.84

Figure 3.28  Distortion



3.85

Figure 3.29  Noise



3.86

The power of a signal is 10 mW and the power of the

noise is 1 μW; what are the values of SNR and SNRdB ?

Solution

The values of SNR and SNRdB can be calculated as

follows:

Example 3.31



3.87

The values of SNR and SNRdB for a noiseless channel

are

Example 3.32

We can never achieve this ratio in real life; it is an ideal.



3.88

Figure 3.30  Two cases of SNR: a high SNR and a low SNR



3.89

3-5   DATA RATE LIMITS

A very important consideration in data communications

is how fast we can send data, in bits per second, over a

channel. Data rate depends on three factors:

1. The bandwidth available

2. The level of the signals we use

3. The quality of the channel (the level of noise)

Noiseless Channel: Nyquist Bit Rate

Noisy Channel: Shannon Capacity

Using Both Limits

Topics discussed in this section:



3.90

Increasing the levels of a signal may 

reduce the reliability of the system.

Note



3.91

Does the Nyquist theorem bit rate agree with the

intuitive bit rate described in baseband transmission?

Solution

They match when we have only two levels. We said, in

baseband transmission, the bit rate is 2 times the

bandwidth if we use only the first harmonic in the worst

case. However, the Nyquist formula is more general than

what we derived intuitively; it can be applied to baseband

transmission and modulation. Also, it can be applied

when we have two or more levels of signals.

Example 3.33



3.92

Consider a noiseless channel with a bandwidth of 3000

Hz transmitting a signal with two signal levels. The

maximum bit rate can be calculated as

Example 3.34



3.93

Consider the same noiseless channel transmitting a

signal with four signal levels (for each level, we send 2

bits). The maximum bit rate can be calculated as

Example 3.35



3.94

We need to send 265 kbps over a noiseless channel with

a bandwidth of 20 kHz. How many signal levels do we

need?

Solution

We can use the Nyquist formula as shown:

Example 3.36

Since this result is not a power of 2, we need to either

increase the number of levels or reduce the bit rate. If we

have 128 levels, the bit rate is 280 kbps. If we have 64

levels, the bit rate is 240 kbps.



3.95

Consider an extremely noisy channel in which the value

of the signal-to-noise ratio is almost zero. In other

words, the noise is so strong that the signal is faint. For

this channel the capacity C is calculated as

Example 3.37

This means that the capacity of this channel is zero

regardless of the bandwidth. In other words, we cannot

receive any data through this channel.



3.96

We can calculate the theoretical highest bit rate of a

regular telephone line. A telephone line normally has a

bandwidth of 3000. The signal-to-noise ratio is usually

3162. For this channel the capacity is calculated as

Example 3.38

This means that the highest bit rate for a telephone line

is 34.860 kbps. If we want to send data faster than this,

we can either increase the bandwidth of the line or

improve the signal-to-noise ratio.



3.97

The signal-to-noise ratio is often given in decibels.

Assume that SNRdB = 36 and the channel bandwidth is 2

MHz. The theoretical channel capacity can be calculated

as

Example 3.39



3.98

For practical purposes, when the SNR is very high, we

can assume that SNR + 1 is almost the same as SNR. In

these cases, the theoretical channel capacity can be

simplified to

Example 3.40

For example, we can calculate the theoretical capacity of

the previous example as



3.99

We have a channel with a 1-MHz bandwidth. The SNR

for this channel is 63. What are the appropriate bit rate

and signal level?

Solution

First, we use the Shannon formula to find the upper

limit.

Example 3.41



3.100

The Shannon formula gives us 6 Mbps, the upper limit.

For better performance we choose something lower, 4

Mbps, for example. Then we use the Nyquist formula to

find the number of signal levels.

Example 3.41 (continued)



3.101

The Shannon capacity gives us the 

upper limit; the Nyquist formula tells us 

how many signal levels we need.

Note



3.102

3-6   PERFORMANCE

One important issue in networking is the performance of

the network—how good is it? We discuss quality of

service, an overall measurement of network performance,

in greater detail in Chapter 24. In this section, we

introduce terms that we need for future chapters.

Bandwidth

Throughput

Latency (Delay)

Bandwidth-Delay Product

Topics discussed in this section:



3.103

In networking, we use the term 

bandwidth in two contexts.
❏ The first, bandwidth in hertz, refers to

the range of frequencies in a

composite signal or the range of

frequencies that a channel can pass.

❏ The second, bandwidth in bits per

second, refers to the speed of bit

transmission in a channel or link.

Note



3.104

The bandwidth of a subscriber line is 4 kHz for voice or

data. The bandwidth of this line for data transmission

can be up to 56,000 bps using a sophisticated modem to

change the digital signal to analog.

Example 3.42



3.105

If the telephone company improves the quality of the line

and increases the bandwidth to 8 kHz, we can send

112,000 bps by using the same technology as mentioned

in Example 3.42.

Example 3.43



3.106

A network with bandwidth of 10 Mbps can pass only an

average of 12,000 frames per minute with each frame

carrying an average of 10,000 bits. What is the

throughput of this network?

Solution

We can calculate the throughput as

Example 3.44

The throughput is almost one-fifth of the bandwidth in

this case.



3.107

What is the propagation time if the distance between the

two points is 12,000 km? Assume the propagation speed

to be 2.4 × 108 m/s in cable.

Solution

We can calculate the propagation time as

Example 3.45

The example shows that a bit can go over the Atlantic

Ocean in only 50 ms if there is a direct cable between the

source and the destination.



3.108

What are the propagation time and the transmission

time for a 2.5-kbyte message (an e-mail) if the

bandwidth of the network is 1 Gbps? Assume that the

distance between the sender and the receiver is 12,000

km and that light travels at 2.4 × 108 m/s.

Solution

We can calculate the propagation and transmission time

as shown on the next slide:

Example 3.46



3.109

Note that in this case, because the message is short and

the bandwidth is high, the dominant factor is the

propagation time, not the transmission time. The

transmission time can be ignored.

Example 3.46 (continued)



3.110

What are the propagation time and the transmission

time for a 5-Mbyte message (an image) if the bandwidth

of the network is 1 Mbps? Assume that the distance

between the sender and the receiver is 12,000 km and

that light travels at 2.4 × 108 m/s.

Solution

We can calculate the propagation and transmission

times as shown on the next slide.

Example 3.47



3.111

Note that in this case, because the message is very long

and the bandwidth is not very high, the dominant factor

is the transmission time, not the propagation time. The

propagation time can be ignored.

Example 3.47 (continued)
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Figure 3.31  Filling the link with bits for case 1



3.113

We can think about the link between two points as a

pipe. The cross section of the pipe represents the

bandwidth, and the length of the pipe represents the

delay. We can say the volume of the pipe defines the

bandwidth-delay product, as shown in Figure 3.33.

Example 3.48



3.114

Figure 3.32  Filling the link with bits in case 2



3.115

The bandwidth-delay product defines 

the number of bits that can fill the link.

Note



3.116

Figure 3.33  Concept of bandwidth-delay product


