
Chapter 2. Machine 

Instructions and 

Programs



Objectives

⚫ Machine instructions and program execution, 

including branching and subroutine call and return 

operations.

⚫ Number representation and addition/subtraction in 

the 2’s-complement system.

⚫ Addressing methods for accessing register and 

memory operands.

⚫ Assembly language for representing machine 

instructions, data, and programs.

⚫ Program-controlled Input/Output operations.



Number, Arithmetic 

Operations, and 

Characters



Signed Integer

⚫ 3 major representations:

Sign and magnitude

One’s complement

Two’s complement

⚫ Assumptions:

4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative



Sign and Magnitude 

Representation

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

0 100 = + 4 

 

1 100 = - 4

+

-

High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude: 0 (000) thru 7 (111)
Number range for n bits = +/-2n-1 -1
Two representations for 0



One’s Complement 

Representation

⚫ Subtraction implemented by addition & 1's complement

⚫ Still two representations of 0!  This causes some problems

⚫ Some complexities in addition

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-7

-6

-5

-4

-3

-2

-1

-0

0 100 = + 4 

 

1 011 = - 4

+

-



Two’s Complement 

Representation

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0 100 = + 4 

 

1 100 = - 4

+

-

⚫ Only one representation for 0

⚫ One more negative number than positive 

number

like 1's comp
except shifted
one position
clockwise



Binary, Signed-Integer 

Representations

0
0
0
0
0
0

0
0
1
1
1
1
1
1
1
1

0
0

0
0
0
0
0
0

1
1
1
1

1
1
1
1

1
1
0
0
1
1

0
0
0
0
1
1
0
0
1
1

1
0
1
0
1
0

1
0
0
1
0
1
0
1
0
1

1+

1-

2+
3+
4+
5+
6+

7+

2-
3-
4-
5-
6-
7-

8-
0+
0-

1+
2+
3+
4+
5+
6+

7+

0+
7-
6-
5-
4-
3-
2-
1-
0-

1+
2+
3+
4+
5+
6+

7+

0+

7-
6-
5-
4-
3-
2-
1-

b3 b2b1b0

Sign and
magnitude 1's complement 2's complement

B Values represented

Figure 2.1. Binary, signed-integer representations.

Page 28



Addition and Subtraction – 2’s 

Complement

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to the high 
order bit =
carry-out then ignore
carry

if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems



2’s-Complement Add and 

Subtract Operations

1 1 0 1
0 1 1 1

0 1 0 0

0 0 1 0
1 1 0 0

1 1 1 0

0 1 1 0
1 1 0 1

0 0 1 1

1 0 0 1
0 1 0 1

1 1 1 0

1 0 0 1
1 1 1 1

1 0 0 0

0 0 1 0
0 0 1 1

0 1 0 1

4+( )

2-( )

3+( )

2-( )

8-( )

5+( )

+

+

+

+

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1

0 1 0 0

6-( )

2-( )

4+( )

3-( )

4+( )

7+( )
+

+
(b)

(d)1 0 1 1
1 1 1 0

1 0 0 1

1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

0 1 0 1

0 0 1 0
0 0 1 1

5-( )

2+( )
3+( )

5+( )

2+( )
4+( )

2-( )

7-( )

3-( )
7-( )

6+( )
3+( )

1+( )

7-( )
5-( )

7-( )

2+( )
3-( )

+

+

-

-

-

-

-

-

(a)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 2.4. 2's-complement Add and Subtract operations.

Page 31



Overflow - Add two positive numbers to get a 

negative number or two negative numbers to 

get a positive number

5 + 3 = -8 -7 - 2 = +7

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1



Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow when carry-in to the high-order bit does not equal carry out



Sign Extension

⚫ Task:

⚫ Given w-bit signed integer x

⚫ Convert it to w+k-bit integer with same value

⚫ Rule:

⚫ Make k copies of sign bit:

⚫ X  =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk



Sign Extension Example

short int x =  15213;

int      ix = (int) x; 

short int y = -15213;

int      iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011



Memory Locations, 

Addresses, and 

Operations



Memory Location, Addresses, 

and Operation

⚫ Memory consists 

of many millions of 

storage cells, 

each of which can 

store 1 bit.

⚫ Data is usually 

accessed in n-bit 

groups. n is called 

word length.

second word

first word

Figure 2.5.   Memory words.

nbits

last word

i th word

•
•
•

•
•
•



Memory Location, Addresses, 

and Operation

⚫ 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers

for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •



Memory Location, Addresses, 

and Operation

⚫ To retrieve information from memory, either for one 

word or one byte (8-bit), addresses for each location 

are needed.

⚫ A k-bit address memory has 2k memory locations, 

namely 0 – 2k-1, called memory space.

⚫ 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

⚫ 32-bit memory: 232 = 4G (1G=230)

⚫ 1K(kilo)=210

⚫ 1T(tera)=240



Memory Location, Addresses, 

and Operation

⚫ It is impractical to assign distinct addresses 

to individual bit locations in the memory.

⚫ The most practical assignment is to have 

successive addresses refer to successive 

byte locations in the memory – byte-

addressable memory.

⚫ Byte locations have addresses 0, 1, 2, … If 

word length is 32 bits, they successive words 

are located at addresses 0, 4, 8,…



Big-Endian and Little-Endian 

Assignments

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

Word

address

•
•
•

•
•
•

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant 

bytes of the word



Memory Location, Addresses, 

and Operation

⚫ Address ordering of bytes

⚫ Word alignment

⚫ Words are said to be aligned in memory if they 
begin at a byte addr. that is a multiple of the num 
of bytes in a word.

⚫ 16-bit word: word addresses: 0, 2, 4,….

⚫ 32-bit word: word addresses: 0, 4, 8,….

⚫ 64-bit word: word addresses: 0, 8,16,….

⚫ Access numbers, characters, and character 
strings



Memory Operation

⚫ Load (or Read or Fetch)

➢ Copy the content. The memory content doesn’t change.

➢ Address – Load

➢ Registers can be used

⚫ Store (or Write)

➢ Overwrite the content in memory

➢ Address and Data – Store

➢ Registers can be used



Instruction and 

Instruction Sequencing



“Must-Perform” Operations

⚫ Data transfers between the memory and the 

processor registers

⚫ Arithmetic and logic operations on data

⚫ Program sequencing and control

⚫ I/O transfers



Register Transfer Notation

⚫ Identify a location by a symbolic name 

standing for its hardware binary address 

(LOC, R0,…)

⚫ Contents of a location are denoted by placing 

square brackets around the name of the 

location (R1←[LOC], R3 ←[R1]+[R2])

⚫ Register Transfer Notation (RTN)



Assembly Language Notation

⚫ Represent machine instructions and 

programs.

⚫ Move LOC, R1 = R1←[LOC]

⚫ Add R1, R2, R3 = R3 ←[R1]+[R2]



CPU Organization

⚫ Single Accumulator

⚫ Result usually goes to the Accumulator

⚫ Accumulator has to be saved to memory quite 

often

⚫ General Register

⚫ Registers hold operands thus reduce memory 

traffic

⚫ Register bookkeeping

⚫ Stack

⚫ Operands and result are always in the stack



Instruction Formats

⚫ Three-Address Instructions

⚫ ADD R1, R2, R3 R1 ← R2 + R3

⚫ Two-Address Instructions

⚫ ADD R1, R2 R1 ← R1 + R2

⚫ One-Address Instructions

⚫ ADD M AC ← AC + M[AR]

⚫ Zero-Address Instructions

⚫ ADD TOS ← TOS + (TOS – 1)

⚫ RISC Instructions

⚫ Lots of registers. Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

⚫ Three-Address

1. ADD R1, A, B ; R1 ← M[A] + M[B]

2. ADD R2, C, D ; R2 ← M[C] + M[D]

3. MUL X, R1, R2 ; M[X] ← R1  R2



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

⚫ Two-Address

1. MOV R1, A ; R1 ← M[A]

2. ADD R1, B ; R1 ← R1 + M[B]

3. MOV R2, C ; R2 ← M[C]

4. ADD R2, D ; R2 ← R2 + M[D]

5. MUL R1, R2 ; R1 ← R1  R2

6. MOV X, R1 ; M[X] ← R1



Instruction Formats

Example:   Evaluate (A+B)  (C+D)

⚫ One-Address

1. LOAD A ; AC ← M[A]

2. ADD B ; AC ← AC + M[B]

3. STORET ; M[T] ← AC 

4. LOAD C ; AC ← M[C]

5. ADD D ; AC ← AC + M[D]

6. MUL T ; AC ← AC  M[T]

7. STOREX ; M[X] ← AC



Instruction Formats
Example:   Evaluate (A+B)  (C+D)

⚫ Zero-Address

1. PUSH A ; TOS ← A

2. PUSH B ; TOS ← B

3. ADD ; TOS ← (A + B)

4. PUSH C ; TOS ← C

5. PUSH D ; TOS ← D

6. ADD ; TOS ← (C + D)

7. MUL ; TOS ← 

(C+D)(A+B)

8. POP X ; M[X] ← TOS



Instruction Formats
Example:   Evaluate (A+B)  (C+D)

⚫ RISC

1. LOAD R1, A ; R1 ← M[A]

2. LOAD R2, B ; R2 ← M[B]

3. LOAD R3, C ; R3 ← M[C]

4. LOAD R4, D ; R4 ← M[D]

5. ADD R1, R1, R2 ; R1 ← R1 + R2

6. ADD R3, R3, R4 ; R3 ← R3 + R4

7. MUL R1, R1, R3 ; R1 ← R1  R3

8. STOREX, R1 ; M[X] ← R1



Using Registers

⚫ Registers are faster

⚫ Shorter instructions

⚫ The number of registers is smaller (e.g. 32 

registers need 5 bits)

⚫ Potential speedup

⚫ Minimize the frequency with which data is 

moved back and forth between the memory 

and processor registers.



Instruction Execution and 

Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8.  A program for C  [A] + [B].

Assumptions:

- One memory operand

per instruction

- 32-bit word length

- Memory is byte

addressable

- Full memory address

can be directly specified

in a single-word instruction

Two-phase procedure

-Instruction fetch

-Instruction execute

Page 43



Branching

NUMn

NUM2

NUM1

R0,SUM

NUMn,R0

NUM3,R0

NUM2,R0

NUM1,R0

Figure 2.9.   A straight-line  program for adding n numbers.

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•



Branching

N,R1Move

NUM n

NUM2

NUM1

R0,SUM

R1

"Next" number to R0

Figure 2.10.   Using a loop to add n numbers.

LOOP

Decrement

Move

LOOP

loop
Program

Determine address of
"Next" number and add

N

SUM

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch



Condition Codes

⚫ Condition code flags

⚫ Condition code register / status register

⚫ N (negative)

⚫ Z (zero)

⚫ V (overflow)

⚫ C (carry)

⚫ Different instructions affect different flags



Conditional Branch 

Instructions

⚫ Example:

⚫ A:  1 1 1 1 0 0 0 0

⚫ B:  0 0 0 1 0 1 0 0

A:      1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 0

Z = 0



Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F



Addressing Modes



Generating Memory Addresses

⚫ How to specify the address of branch target?

⚫ Can we give the memory operand address 

directly in a single Add instruction in the loop?

⚫ Use a register to hold the address of NUM1; 

then increment by 4 on each pass through 

the loop.



Addressing Modes

⚫ Implied

⚫ AC is implied in “ADD   M[AR]” in “One-Address” 

instr.

⚫ TOS is implied in “ADD” in “Zero-Address” instr.

⚫ Immediate

⚫ The use of a constant in “MOV   R1, 5”, i.e. R1 ← 

5

⚫ Register

⚫ Indicate which register holds the operand

Opcode Mode ...



Addressing Modes
⚫ Register Indirect

⚫ Indicate the register that holds the number of the 

register that holds the operand

MOV R1, (R2)

⚫ Autoincrement / Autodecrement

⚫ Access & update in 1 instr.

⚫ Direct Address

⚫ Use the given address to access a memory 

location

R1

R2 = 3

R3 = 5



Addressing Modes

⚫ Indirect Address

⚫ Indicate the memory location that holds the 

address of the memory location that holds the 

data

AR = 101

100

101

102

103

104

0  1  0  4

1  1  0  A



100

101

102

103

104

0

1

2

Addressing Modes

⚫ Relative Address

⚫ EA = PC + Relative Addr

AR = 100

1  1  0  A

PC = 2

+

Could be Positive or 
Negative

(2’s Complement)



Addressing Modes

⚫ Indexed

⚫ EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1  1  0  A

XR = 2

+

Could be Positive or 
Negative

(2’s Complement)

Useful with 
“Autoincrement” or 
“Autodecrement”



Addressing Modes

⚫ Base Register

⚫ EA = Base Register + Relative Addr

100

101

102

103

104

BR = 100

0  0  0  A

AR = 2

+

Could be Positive or 
Negative

(2’s Complement)

Usually points to 
the beginning of 

an array

0  0  0  5

0  0  1  2

0  1  0  7

0  0  5  9



Addressing Modes

⚫ The different 
ways in which 
the location of 
an operand is 
specified in 
an instruction 
are referred 
to as 
addressing 
modes.

Name Assem bler syn tax Addressing function

Immediate #V alue Op erand = Value

Register R i EA = R i

Absolute (Direct) LOC EA = LOC

Indirect (R i ) EA = [R i ]
(LOC) EA = [LOC]

Index X(R i) EA = [R i ] + X

Base with index (R i ,R j ) EA = [R i ] + [R j ]

Base with index X(R i ,R j ) EA = [R i ] + [R j ] + X
and offset

Relative X(PC) EA = [PC] + X

Autoincremen t (R i )+ EA = [R i ] ;
Incremen t R i

Autodecrement (R i ) Decremen t R i ;
EA = [R i]

−



Indexing and Arrays

⚫ Index mode – the effective address of the operand 

is generated by adding a constant value to the 

contents of a register.

⚫ Index register

⚫ X(Ri): EA = X + [Ri]

⚫ The constant X may be given either as an explicit 

number or as a symbolic name representing a 

numerical value.

⚫ If X is shorter than a word, sign-extension is needed.



Indexing and Arrays

⚫ In general, the Index mode facilitates access 

to an operand whose location is defined 

relative to a reference point within the data 

structure in which the operand appears.

⚫ Several variations:

(Ri, Rj): EA = [Ri] + [Rj]

X(Ri, Rj): EA = X + [Ri] + [Rj]



Relative Addressing

⚫ Relative mode – the effective address is determined 

by the Index mode using the program counter in 

place of the general-purpose register.

⚫ X(PC) – note that X is a signed number

⚫ Branch>0        LOOP

⚫ This location is computed by specifying it as an 

offset from the current value of PC.

⚫ Branch target may be either before or after the 

branch instruction, the offset is given as a singed 

num.



Additional Modes

⚫ Autoincrement mode – the effective address of the operand is 
the contents of a register specified in the instruction. After 
accessing the operand, the contents of this register are 
automatically incremented to point to the next item in a list.

⚫ (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-bit 
operands, and 4 for 32-bit operands.

⚫ Autodecrement mode: -(Ri) – decrement first

R0Clear

R0,SUM

R1
(R2)+,R0

Figure 2.16.  The Autoincrement addressing mode used in the program of Figure 2.12.

Initialization

Move

LOOP Add
Decrement

LOOP

#NUM1,R2
N,R1Move

Move

Branch>0



Assembly Language



Types of Instructions

⚫ Data Transfer Instructions
Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is 
not modified



Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD   ADR AC ← M[ADR]

Indirect address LD   @ADR AC ← M[M[ADR]]

Relative address LD   $ADR AC ← M[PC+ADR]

Immediate operand LD   #NBR AC ← NBR

Index addressing LD   ADR(X) AC ← M[ADR+XR]

Register LD   R1 AC ← R1

Register indirect LD   (R1) AC ← M[R1]

Autoincrement LD   (R1)+ AC ← M[R1], R1 ← R1+1



Data Manipulation Instructions

⚫ Arithmetic

⚫ Logical & Bit Manipulation

⚫ Shift

Name Mnemonic

Increment INC

Decrement DEC

Add ADD

Subtract SUB

Multiply MUL

Divide DIV

Add with carry ADDC

Subtract with borrow SUBB

Negate NEG

Name Mnemonic

Clear CLR

Complement COM

AND AND

OR OR

Exclusive-OR XOR

Clear carry CLRC

Set carry SETC

Complement carry COMC

Enable interrupt EI

Disable interrupt DI

Name Mnemonic

Logical shift right SHR

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC



Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare 

(Subtract)
CMP

Test (AND) TST

Subtract A – B but 
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

Mask



Conditional Branch 

Instructions

Mnemonic Branch Condition Tested Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV Branch if no overflow V = 0



Basic Input/Output 

Operations



I/O

⚫ The data on which the instructions operate 

are not necessarily already stored in memory.

⚫ Data need to be transferred between 

processor and outside world (disk, keyboard, 

etc.)

⚫ I/O operations are essential, the way they are 

performed can have a significant effect on the 

performance of the computer.



Program-Controlled I/O 

Example

⚫ Read in character input from a keyboard and 
produce character output on a display screen.

➢ Rate of data transfer (keyboard, display, processor)

➢ Difference in speed between processor and I/O device 
creates the need for mechanisms to synchronize the 
transfer of data.

➢ A solution: on output, the processor sends the first 
character and then waits for a signal from the display 
that the character has been received. It then sends the 
second character. Input is sent from the keyboard in a 
similar way.



Program-Controlled I/O 

Example

DATAIN DATAOUT

SIN SOUT

Key board Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers

- Flags

- Device interface



Program-Controlled I/O 

Example

⚫ Machine instructions that can check the state 

of the status flags and transfer data:
READWAIT  Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0

Output from R1 to DATAOUT



Program-Controlled I/O 

Example

⚫ Memory-Mapped I/O – some memory 

address values are used to refer to peripheral 

device buffer registers. No special 

instructions are needed. Also use device 

status registers.

READWAIT  Testbit   #3, INSTATUS

Branch=0  READWAIT

MoveByte  DATAIN, R1



Program-Controlled I/O 

Example

⚫ Assumption – the initial state of SIN is 0 and the 

initial state of SOUT is 1.

⚫ Any drawback of this mechanism in terms of 

efficiency?

⚫ Two wait loops→processor execution time is wasted

⚫ Alternate solution?

⚫ Interrupt



Stacks



Home Work

⚫ For each Addressing modes mentioned 

before, state one example for each 

addressing mode stating the specific benefit 

for using such addressing mode for such an 

application.



Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ LIFO

Last In First Out
0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

FULL EMPTY



Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ PUSH

SP ← SP – 1

M[SP] ← DR

If (SP = 0) then (FULL ← 1)

EMPTY ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

FULL EMPTY

1  6  9  0

1  6  9  0Current
Top of Stack

TOS



Stack Organization

SP

Stack Bottom

Current
Top of Stack

TOS⚫ POP

DR ← M[SP]

SP ← SP + 1

If (SP = 11) then (EMPTY ← 1)

FULL ← 0

0

1

2

3

4

7

8

9

10

5

6

Stack

0  0  5  5

0  0  0  8

0  0  2  5

0  0  1  5

0  1  2  3

FULL EMPTY

1  6  9  01  6  9  0

Current
Top of Stack

TOS



0

1

2

102

202

201

200

100

101

Stack Organization

⚫ Memory Stack

⚫ PUSH

SP ← SP – 1

M[SP] ← DR

⚫ POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP



Reverse Polish Notation

⚫ Infix Notation

A + B

⚫ Prefix or Polish Notation

+ A B

⚫ Postfix or Reverse Polish Notation (RPN)

A B +

A  B + C  D A B  C D  +
RPN

(2) (4)  (3) (3)  +

(8) (3) (3)  +

(8) (9) +

17



Reverse Polish Notation

⚫ Example

(A + B)  [C  (D + E) + F]

(A B +) (D E +) C  F +



Reverse Polish Notation

⚫ Stack Operation

(3) (4)  (5) (6)  +

PUSH      3

PUSH      4

MULT

PUSH      5

PUSH      6

MULT

ADD

3

4

12

5

6

30

42



Additional 

Instructions



Logical Shifts

⚫ Logical shift – shifting left (LShiftL) and shifting right 
(LShiftR)

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift r ight LShiftR   #2,R0

(a) Logical shift left LShiftL    #2,R0

C R0 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

. . .



Arithmetic Shifts

C

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Ar ithmetic shift right AShiftR   #2,R0

R0

. . .



Rotate

Figure 2.32.  Rotate instructions.

CR0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate right without carry RotateR   #2,R0

(a) Rotate left without carry RotateL    #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

C

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate right with carry RotateRC   #2,R0

R0

. . .

. . .

(b) Rotate left with carry RotateLC   #2,R0

C R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101



Multiplication and Division

⚫ Not very popular (especially division)

⚫ Multiply  Ri, Rj

Rj ← [Ri] х [Rj]

⚫ 2n-bit product case: high-order half in R(j+1)

⚫ Divide  Ri, Rj

Rj ← [Ri] / [Rj]

Quotient is in Rj, remainder may be placed in R(j+1)



Encoding of Machine 

Instructions



Encoding of Machine 

Instructions

⚫ Assembly language program needs to be converted into machine 
instructions. (ADD = 0100 in ARM instruction set)

⚫ In the previous section, an assumption was made that all 
instructions are one word in length.

⚫ OP code: the type of operation to be performed and the type of 
operands used may be specified using an encoded binary pattern

⚫ Suppose 32-bit word length, 8-bit OP code (how many instructions 
can we have?), 16 registers in total (how many bits?), 3-bit 
addressing mode indicator.

⚫ Add  R1, R2

⚫ Move  24(R0), R5

⚫ LshiftR  #2, R0

⚫ Move  #$3A, R1

⚫ Branch>0  LOOP

OP code Source Dest Other info

8 7 7 10

(a) One-word instruction



Encoding of Machine 

Instructions

⚫ What happens if we want to specify a memory 

operand using the Absolute addressing mode?

⚫ Move  R2, LOC

⚫ 14-bit for LOC – insufficient

⚫ Solution – use two words

(b) Two-word instruction

Memory address/Immediate operand

OP code Source Dest Other info



Encoding of Machine 

Instructions

⚫ Then what if an instruction in which two operands 

can be specified using the Absolute addressing 

mode?

⚫ Move  LOC1, LOC2

⚫ Solution – use two additional words

⚫ This approach results in instructions of variable 

length. Complex instructions can be implemented, 

closely resembling operations in high-level 

programming languages – Complex Instruction Set 

Computer (CISC)



Encoding of Machine 

Instructions

⚫ If we insist that all instructions must fit into a single 

32-bit word, it is not possible to provide a 32-bit 

address or a 32-bit immediate operand within the 

instruction.

⚫ It is still possible to define a highly functional 

instruction set, which makes extensive use of the 

processor registers.

⚫ Add  R1, R2 ----- yes

⚫ Add  LOC, R2 ----- no

⚫ Add  (R3), R2 ----- yes


