CMSG-I...amitavads9@gmail.com

-09/07/21 (Fri)

WEST BENGAL STATE UNIVERSITY

B.Sc. General Part-I Examination, 2021

COMPUTER SCIENCE

PAPER: CMSG-I

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

- 1. Answer any *four* questions from the following: $2 \times 4 = 8$
 - (a) Simplify x'y + x'yz + z
 - (b) What do you mean by addressing mode?
 - (c) What are the differences between static and dynamic RAM?
 - (d) What do you mean by multitasking operating system?
 - (e) What do you mean by GUI?
 - (f) What are the phases of Instruction Cycle?
 - (g) What is the advantage of 2's complement representation over 1's complement representation?
 - (h) What is the function of OMR?
 - (i) Explain LIFO in terms of stack.
 - (j) What is ripple counter?
 - (k) How are binary codes converted to grey codes?
 - (l) How is class related with object?
 - (m) Explain XOR gate with truth table.
 - (n) What is demand paging?
 - (o) What is stack point register?

GROUP-A

		Answer any one question from the following	$16 \times 1 = 16$
2.	(a)	Compare between single-pass assembler and two-pass assembler.	3
	(b)	Distinguish between compiler and interpreter.	4
	(c)	Write short note on Von Newman architecture.	4
	(d)	Draw the block diagram of a CPU.	3
	(e)	Define operating system.	2
3.	(a)	Explain max heap and min heap with examples.	3
	(b)	Write an algorithm to delete a node from a doubly linked list. The node can be anywhere of the linked list.	6
	(c)	Draw a flow chart to find LCM and HCF of two given numbers.	4
	(d)	Describe the big-oh notation.	3
4.	(a)	Sort the following elements using Quick Sort.	6
		55, 88, 22, 44, 33, 11, 77, 110, 66, 99	

B.Sc./Part-I/Gen./CMSG-I/2021

	(b)	Define a Max-Heap.	2
	(c)	How a sparse matrix is represented using a Linked List?	3
	(d)	Illustrate the concept of a Priority Queue and a Dequeue with example.	5
		GROUP-B	
		Answer any one question from the following	$13 \times 1 = 13$
5.	(a)	Perform $(-19)_{10} + (-25)_{10} = (?)_2$. Use 2's complement method after converting the input number in binary.	3
	(b)	Design a 2-input XOR gate using Four (4) 2-input NAND Gates only. Show only the circuit diagram mentioning intermediate results.	3
	(c)	$f = \sum (2, 4, 8, 12, 15) + \phi(3, 7, 13)$	7
		Realize a circuit producing f as output using only NOR gates, after minimizing the expression by means of K -Map.	
6.	(a)	Describe and implement any one universal gate for all basic gates (with diagram).	5
		Draw and explain (with truth table) full adder using two half adders.	3+2
		Design a 3-to-8. Decode using NAND gates only.	3
7.	(a)	What do you mean by race around condition of JK flip-flop?	3
	(b)	What is register?	2
	(c)	Name four special purpose register in CPU.	3
	(d)	$(1010100)_2 - (1000100)_2 = ?(using 1's complement)$	3
	(e)	$(1.0101)_2 = (?)_{10}$	2
		CROVE C	
		GROUP-C	10 1 10
		Answer any <i>one</i> question from the following	$13 \times 1 = 13$
		What is virtual memory?	3
		Differentiate between paging and segmentation.	4
		What is kernel and briefly explain its function.	3
	(d)	What is shell in terms of UNIX?	3
9.	(a)	Write down the different Process States.	4
	` ′	What is PCB?	2
		What is job queue and ready queue?	3
		What do you mean by context switch?	2
	(e)	What is Co-operating process?	2

N.B.: Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

____x___

1033